RTX 5060 Ollama Benchmarks: Best GPU for 8GB LLMs Below

The NVIDIA RTX 5060 GPU with 8GB of VRAM is an affordable yet surprisingly capable option for running open-source large language models (LLMs) locally. With the help of Ollama—a user-friendly framework for running quantized LLMs—it’s now easier than ever to deploy models like LLaMA, DeepSeek, Mistral, and Phi on consumer-grade hardware.

Test Overview

Server Configs:

  • CPU: 24-Core Platinum 8160
  • RAM: 64GB RAM
  • Storage: 120GB SSD + 960GB SSD
  • Network: 1Gbps
  • OS: Ubuntu 22.0

A Single 5060 Details:

  • GPU: Nvidia GeForce RTX 5060
  • Microarchitecture: Blackwell 2.0
  • Compute Capability: 12.0
  • CUDA Cores: 3840
  • Tensor Cores: 144
  • Memory: 8GB GDDR7

We benchmarked 18 popular models on the RTX 5060 8GB using Ollama 0.9.5, and here are the results.

Benchmarking Ollama Results on Nvidia RTX5060

Modelsdeepseek-r1deepseek-r1deepseek-r1gemma3ngemma3ngemma3gemma3qwen3qwen3qwen3qwen3llama3.1llama3.2llama3.2phi4-miniphi3.5phimistral
Parameters1.5b7b8be2be4b1b4b0.6b1.7b4b8b8b1b3b3.8b3.8b2.7b7b
Size (GB)1.14.75.25.67.50.8153.30.5231.42.65.24.91.32.02.52.21.64.4
Quantization444444444444444444
Running onOllama0.9.5Ollama0.9.5Ollama0.9.5Ollama0.9.5Ollama0.9.5Ollama0.9.5Ollama0.9.5Ollama0.9.5Ollama0.9.5Ollama0.9.5Ollama0.9.5Ollama0.9.5Ollama0.9.5Ollama0.9.5Ollama0.9.5Ollama0.9.5Ollama0.9.5Ollama0.9.5
Downloading Speed(mb/s)114114114114114114114114114114114114114114114114114114
GPU UTL54%72%79%68%70%59%77%67%77%85%90%75%57%60%61%80%68%88%
Eval Rate(tokens/s)111.0658.4653.9156.1139.51146.6480.72210.97156.3989.5961.7058.07133.4996.4175.00113.89131.4772.88
Record real-time RTX5060 gpu server resource consumption data:

Analysis & Insights

1. Surprisingly High Token Speeds

Qwen3:0.6b achieved over 210 tokens/sec, the highest in the benchmark. Models under ~2GB like Gemma3:1b, Qwen3:1.7b, and Phi:2.7b consistently hit 130–150 tokens/sec, making them ideal for real-time applications.

2. Excellent Fit for 8GB VRAM

Most 1–4GB quantized models ran smoothly without VRAM overflow. Even 7B class models like Mistral and DeepSeek-R1 worked, albeit at reduced speed (under 75 tokens/sec).

3. Ollama 0.9.5 Compatibility Is Strong

All models tested used ollama run without any errors or special tweaks. The Q4 quantization format ensures compatibility across the board.

4. Best Speed-to-Quality Trade-offs

Qwen3:1.7b and Phi:2.7b stand out for having solid reasoning abilities and fast eval rates. These are suitable for use cases like coding, chat, summarization, and TTS (for Phi).

5. Download Bottleneck Irrelevant

All models downloaded at ~114MB/s—meaning download time is consistent and fast across the board.

6. Best Models for Low-Latency Inference

Qwen3:0.6b and Gemma3:1b are ideal for streaming responses, chatbots, or serverless APIs due to sub-1GB size and ultra-fast generation.

7. Real-Time LLM on Budget GPUs Is Viable

The RTX 5060 proves that consumer GPUs can now serve local LLMs in real-time, opening new doors for developers, educators, and startups.

RTX 5060 GPU Hosting for 10B LLMs Below

DBM dedicated RTX 5060 GPU server is optimized for LLM inference, fine-tuning, and deep learning workloads. With 8GB memory, it can handle ollama models up to 10B parameters efficiently.

Basic GPU Dedicated Server - RTX 5060

159.00/mo
1mo3mo12mo24mo
Order Now
  • 64GB RAM
  • GPU: Nvidia GeForce RTX 5060
  • 24-Core Platinum 8160
  • 120GB SSD + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Blackwell 2.0
  • CUDA Cores: 4608
  • Tensor Cores: 144
  • GPU Memory: 8GB GDDR7
  • FP32 Performance: 23.22 TFLOPS

Enterprise GPU Dedicated Server - RTX 4090

409.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: GeForce RTX 4090
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ada Lovelace
  • CUDA Cores: 16,384
  • Tensor Cores: 512
  • GPU Memory: 24 GB GDDR6X
  • FP32 Performance: 82.6 TFLOPS

Enterprise GPU Dedicated Server - A100

639.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: Nvidia A100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS
New Arrival

Enterprise GPU Dedicated Server - RTX 5090

479.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: GeForce RTX 5090
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Blackwell 2.0
  • CUDA Cores: 21,760
  • Tensor Cores: 680
  • GPU Memory: 32 GB GDDR7
  • FP32 Performance: 109.7 TFLOPS

Conclusion: Best LLMs for RTX 5060

The RTX 5060 (8GB) paired with Ollama 0.9.5 supports dozens of quantized models, delivering surprisingly high throughput.

If you need to run lightweight chatbots, coding assistants, or inference pipelines on a budget GPU, the RTX 5060 is more than capable with these optimized LLMs.

Tags:

Nvidia RTX 5060 Hosting, Ollama benchmarks, LLM performance, RTX 5060 AI, Ollama 0.9.5, local LLM hosting, DeepSeek RTX, Qwen3 Ollama, Phi LLM, Mistral Ollama, llama3 benchmarks, Gemma3 inference speed, Ollama GPU benchmark, RTX 5060 AI server

Outline